

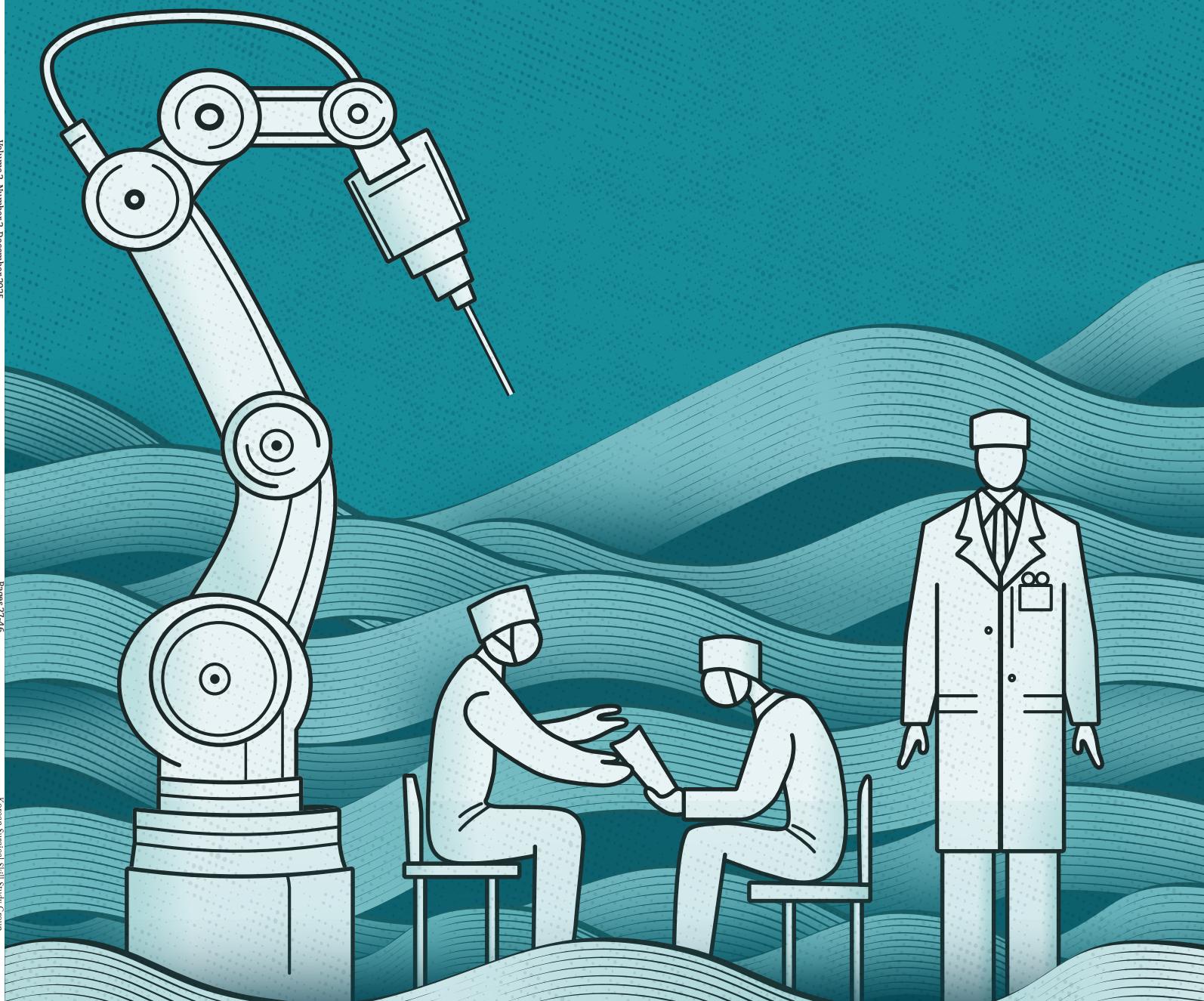
JSIE

Journal of Surgical Innovation and Education

JSIE Journal of Surgical Innovation and Education

<https://jsiejournal.org>
pISSN: 3022-9065 | eISSN: 3022-9073

Volume 2, Number 2, December 2025


JSIE

Journal of Surgical Innovation and Education

Volume 2, Number 2, December 2025

Pages 27-46

Korean Surgical Skill Study Group

Volume 2, Number 2, December 2025

Aims and scope

Journal of Surgical Innovation and Education (JSIE) is an official and peer-reviewed journal of the Korean Surgical Skill Study Group. As an open-access scientific journal, JSIE is committed to promoting the transfer of cutting-edge and novel surgical techniques, as well as advancing surgical education. The journal is designed to serve as an indispensable resource for surgeons, trainees, and healthcare professionals seeking to refine their surgical practice and embrace innovation in all areas of surgery.

JSIE aims to:

- Provide the development of innovative surgical procedure and technology
- Ensure a more effective transfer of surgery-related detail and knowledge
- Provide an immersive learning experience through high-definition surgical video demonstrations.
- Bridge the gap between traditional surgical education and the evolving demands of modern surgical practices.

Our scope encompasses:

- Newly emerging surgical technologies and techniques
- Tutorials on essential surgical skills, catering to a range of expertise from novice to expert
- Practice and research in minimally invasive or open surgery
- Surgical endoscopy
- Other techniques in the fields of general/thoracic/traumatic/pediatric/neuro/orthopedic surgery, obstetrics, gynecology, and urology.

Open access

Journal of Surgical Innovation and Education is an Open Access journal distributed under the terms of the Creative Commons Attribution Non-Commercial License (<https://creativecommons.org/licenses/by-nc/4.0/>) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Publisher Korean Surgical Skill Study Group

Editor-In-Chief In-Seob Lee, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

Editorial office

Korean Surgical Skill Study Group

415, Venture Building, 5-15, Seongji 5-gil, Mapo-gu, Seoul 04083, Korea

Tel: +82-70-8691-1705 E-mail: office@jsiejournal.org

Printing office

M2PI

#805, 26 Sangwon 1-gil, Seongdong-gu, Seoul 04779, Korea

Tel: +82-2-6966-4930 Fax: +82-2-6966-4945 E-mail: support@m2-pi.com

Editorial board

Editor-in-chief

In-Seob Lee

Department of Surgery, University of Ulsan, Korea

Associate editor

Sa-Hong Min

Department of Surgery, University of Ulsan, Korea

Editorial board

Maria Bencivinga

Department of Surgery, Verona University, Italy

Felix Berlth

Department of Surgery, Mainz University, Germany

Hua Huang

Department of Surgery, Fudan University, Shanghai Cancer Center, China

Sang-Ho Jeong

Department of Surgery, Gyeongsang National University, Korea

HyungJin Kim

Department of Surgery, The Catholic University of Korea, Korea

Jae Hun Kim

Department of Surgery, Pusan National University, Korea

Sung Geun Kim

Department of Surgery, The Catholic University of Korea, Korea

Seong-Ho Kong

Department of Surgery, Seoul National University, Korea

Jin Suk Lee

Department of Surgery, Chungbuk National University, Korea

Seog Ki Min

Department of Surgery, Ewha Womans University, Korea

Fatima Mrue

Department of Surgery, Federal University of Goiás, Brazil

Hyukjai Shin

Department of Surgery, Hanyang University, Korea

Jimmy Bok-Yan So

Department of Surgery, National University Hospital, Singapore

Dae Kyung Sohn

Department of Surgery, National Cancer Center, Korea

English editor

Dombrowski, Andrew

Compecs, Inc., Korea

Manuscript editor

Hyun Jung Kwon

Freelancer, Korea

Layout editor

In A Park

M2PI, Korea

Website and JATS XML file producer

Minyoung Choi

M2PI, Korea

Volume 2, Number 2, December 2025

How I Do It

27 High Lymph Node Dissection with Low Ligation: A Modified Technique for Left Colic Artery Preservation in Colorectal Cancer
Jesung Park, Beom Gyu Kim, Yong Gum Park, Byung Kwan Park

31 Indocyanine Green Fluorescence-Guided Enucleation via the Serosal Approach for Benign Subepithelial Tumors of the Gastroesophageal Junction
Ji-Hyeon Park, Sojung Kim, Ho Seok Seo, Kyo Young Song, Han Hong Lee

35 Laparoscopic Inguinal Hernia Repair in Female Pediatric Patients
Joong Kee Youn

Dynamic Educational Manuscript

39 Carotid Endarterectomy with Plication
Seongeun Kim, Jun Gyo Gwon

Short Communication

41 Robot-Assisted Surgery Training for Medical Students in Low-Resource Areas: A Study Protocol
Ifrah Khurram, Jaclyn Jakubowski, Jacob Minter, Pedro F. Escobar

High Lymph Node Dissection with Low Ligation: A Modified Technique for Left Colic Artery Preservation in Colorectal Cancer

Jesung Park¹, Beom Gyu Kim^{1,2}, Yong Gum Park^{1,2}, Byung Kwan Park^{1,2}

¹Department of Surgery, Chung-Ang University Hospital, Seoul, Republic of Korea

²Department of Surgery, Chung-Ang University College of Medicine, Seoul, Republic of Korea

The optimal level of inferior mesenteric artery (IMA) ligation in colorectal cancer remains controversial. High ligation allows complete D3 lymphadenectomy but sacrifices the left colic artery (LCA), raising concerns about anastomotic ischemia. This report presents a modified low ligation technique that achieves radical D3 dissection while preserving the LCA. The technique involves complete skeletonization of the IMA root with en bloc removal of surrounding lymphatic tissue while maintaining LCA continuity. Key procedural steps include: (1) medial-to-lateral mobilization, (2) exposure of the IMA origin, (3) para-IMA lymph node dissection along the vascular sheath, (4) preservation of the LCA and autonomic plexus, and (5) distal IMA division below the LCA bifurcation. Intraoperative images illustrate the dissected nodal field and preserved vasculature. This technique enables D3-level lymph node dissection comparable to high ligation, with clear visualization of the IMA root and preserved arterial supply. Thirty-five lymph nodes, including one metastatic node, were retrieved without compromising perfusion. This modified approach balances oncologic completeness with physiologic preservation and may serve as a practical model for achieving D3 lymphadenectomy with vascular preservation.

Keywords: Colorectal neoplasms; Lymph node excision; Mesenteric arteries; Surgical procedures, Operative; Minimally invasive surgical procedures

Introduction

The level of inferior mesenteric artery (IMA) ligation in colorectal cancer surgery remains debated. High ligation (HL) at the aortic origin allows extensive D3 dissection and removal of para-IMA nodes [1], but sacrifices the left colic artery (LCA) and may increase anastomotic ischemia [2]. Low ligation (LL) preserves the LCA and physiological blood flow but may result in limited lymph node retrieval at the IMA root [1].

With open surgery and early laparoscopy, exposing the IMA origin while preserving surrounding structures was difficult [3]. Modern high-definition laparoscopy and robotic systems permit precise visualization and safer skeletonization, yet many surgeons still perform HL. This gap underscores the need for approaches that reflect current technological capabilities.

To address this, we developed a modified LL technique that enables complete D3 lymph node dissection while preserving the LCA and autonomic plexus [4].

Received: November 13, 2025 **Revised:** December 4, 2025 **Accepted:** December 5, 2025

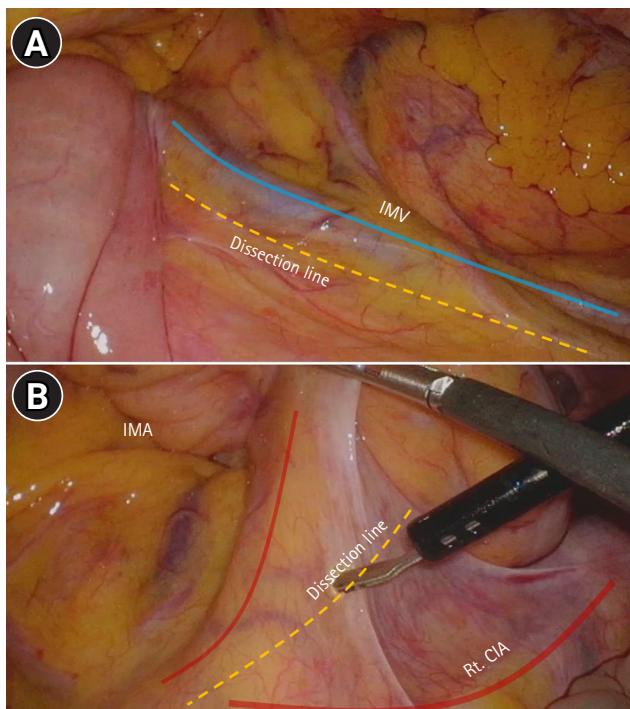
Corresponding author: Byung Kwan Park, MD

Department of Surgery, Chung-Ang University Hospital, 102 Heukseok-ro, Dongjak-gu, Seoul 06973, Republic of Korea

Tel: +82-2-6299-1548, Fax: +82-2-6299-2017, E-mail: headlet@cau.ac.kr

© 2025 Korean Surgical Skill Study Group

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (<https://creativecommons.org/licenses/by-nc/4.0/>) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.


Case Presentation

Medial-to-lateral mobilization

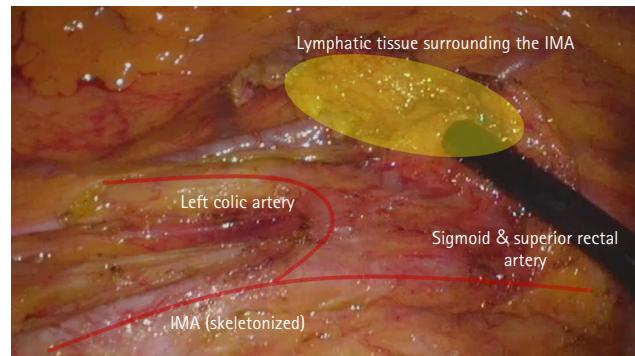
The peritoneum is incised between the right common iliac artery and the IMA or sigmoid artery to enter the pelvic mesenteric plane. Cranial dissection continues beneath the IMA. The peritoneum along the right border of the inferior mesenteric vein connects upper and lower planes (Fig. 1).

Inferior mesenteric artery exposure and nerve preservation

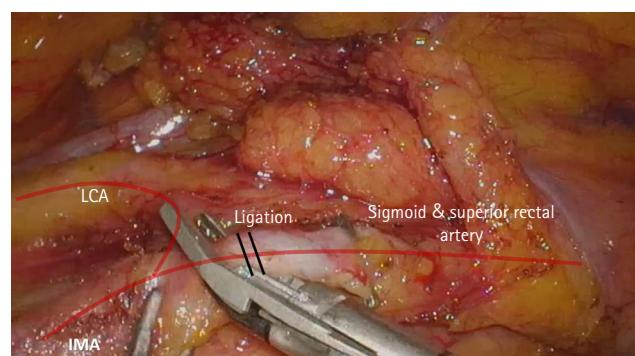
Traction on the mesocolon exposes the IMA origin. The hypogastric plexus and autonomic nerves are preserved by maintaining the dissection anterior to the neural sheath and identifying the ureter and gonadal vessels as the lateral boundary of the safe plane, while the proximal IMA is skeletonized along the vascular sheath.

Fig. 1. Medial-to-lateral mobilization. (A) The peritoneum along the right (Rt.) border of the inferior mesenteric vein (IMV) is incised to connect the upper and lower planes, creating a continuous medial-to-lateral field. (B) The peritoneum is incised between the Rt. common iliac artery (CIA) and the inferior mesenteric artery (IMA) or sigmoid artery to enter the pelvic mesenteric plane.

Lymph node dissection


Para-IMA lymphatic tissue is removed en bloc, extending distally for full IMA skeletonization while maintaining a close posterior plane to avoid nerve injury (Fig. 2).

Left colic artery–sigmoid bifurcation and selective ligation


Complete skeletonization exposes the bifurcation. The LCA is preserved; only the sigmoid artery is ligated. Distal lymphatics along the LCA remain with the specimen (Fig. 3).

Mobilization and resection

Lateral mobilization proceeds toward the splenic flex-

Fig. 2. Skeletonization of the inferior mesenteric artery (IMA) root. After identifying the IMA origin, lymphatic tissue is dissected en bloc along the vascular sheath while preserving the posterior hypogastric plexus.

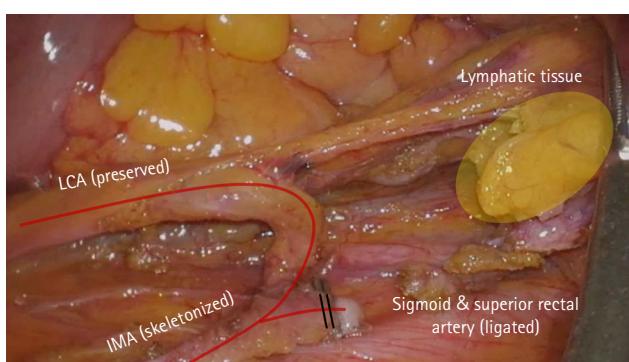
Fig. 3. Left colic artery (LCA) identification and selective ligation. Skeletonization exposes the LCA–sigmoid artery bifurcation. The LCA is preserved, and only the sigmoid artery is ligated and divided.

IMA, inferior mesenteric artery.

ure. The specimen includes sigmoid/upper rectal mesentery and lymphatic tissue from the IMA root to the sigmoid bifurcation (Fig. 4).

Summary

This technique achieves D3 lymphadenectomy while preserving the LCA through sequential skeletonization of the IMA. Thirty-five lymph nodes were retrieved, including one metastatic, comparable to HL. The high lymph node dissection with low ligation (HD-LL) therefore provides radical oncologic clearance while maintaining physiological perfusion.


Ethical approval

This report includes non-identifiable intraoperative images; therefore, institutional review board approval was not required.

Discussion

HL enables thorough lymphadenectomy but sacrifices the LCA, increasing ischemic risk [2], whereas LL preserves blood flow but may limit lymph node clearance [1]. The HD-LL technique addresses this by enabling complete skeletonization of the IMA root and D3 lymphadenectomy while preserving the LCA and autonomic plexus [4,5].

However, preserving the LCA can reduce the mobility of the descending colon and increase anastomotic tension, which represents a practical limitation of LL.

Fig. 4. Completion of the procedure. The left colic artery (LCA) is preserved, with the sigmoid and superior rectal arteries ligated. Continuous para-inferior mesenteric artery (IMA) lymphatic tissue remains attached to the specimen.

In contrast, HL can relieve mesenteric tension and facilitate a tension-free anastomosis, particularly in low rectal cancer where greater colonic reach is required. Therefore, the ligation level should be tailored to the balance between perfusion preservation and mesenteric mobility.

LL may be preferable in patients in whom preserving arterial perfusion is critical, such as those with high anastomotic leak risk. Patients with high anastomotic leak risk—such as those with corticosteroid use, smoking, diabetes, obesity, malnutrition, vascular disease, or prior neoadjuvant chemoradiation—may derive greater advantage from preserving the LCA. Conversely, when mesenteric reach is limited or tension reduction is a priority, HL may be more suitable.

The 35-node yield in our case was comparable to conventional HL [1,4], demonstrating that perfusion can be preserved without compromising oncologic completeness.

Modern laparoscopic and robotic platforms facilitate precise dissection and selective vascular preservation, shifting focus from the “height of ligation” to the “depth of dissection and anatomic precision.” While promising, the technique requires adequate anatomical understanding and technical proficiency. Broader validation through multi-institutional experience will further establish its utility.

Disclosure

No potential conflict of interest relevant to this article was reported.

Author contributions

Conceptualization: JP, BKP; Data curation: JP, BGK, YGP; Formal analysis: JP; Investigation: JP; Methodology: JP, BGK, YGP; Project administration: BKP; Software: JP; Supervision: BKP; Validation: BGK, YGP; Visualization: JP; Writing-original draft: JP; Writing-review & editing: BGK, YGP, BKP.

ORCID

Jesung Park, <https://orcid.org/0000-0001-8740-0709>

Beom Gyu Kim, <https://orcid.org/0000-0001-9166-1768>
Yong Gum Park, <https://orcid.org/0000-0003-3054-8096>
Byung Kwan Park, <https://orcid.org/0000-0002-2283-8483>

References

1. Kim K, An S, Kim MH, Jung JH, Kim Y. High versus low ligation of the inferior mesenteric artery in colorectal cancer surgery: a systematic review and meta-analysis. *Medicina (Kaunas)*. 2022;58:1143.
2. Zeng J, Su G. High ligation of the inferior mesenteric artery during sigmoid colon and rectal cancer surgery increases the risk of anastomotic leakage: a meta-analysis. *World J Surg Oncol*. 2018;16:157.
3. Pigazzi A, Ellenhorn JD, Ballantyne GH, Paz IB. Robotic-assisted laparoscopic low anterior resection with total mesorectal excision for rectal cancer. *Surg Endosc*. 2006;20:1521-1525.
4. Akagi T, Inomata M, Hara T, Mizusawa J, Katayama H, Shida D, et al. Clinical impact of D3 lymph node dissection with left colic artery (LCA) preservation compared to D3 without LCA preservation: exploratory subgroup analysis of data from JCOG0404. *Ann Gastroenterol Surg*. 2020;4:163-169.
5. West NP, Hohenberger W, Weber K, Perrakis A, Finan PJ, Quirke P. Complete mesocolic excision with central vascular ligation produces an oncologically superior specimen compared with standard surgery for carcinoma of the colon. *J Clin Oncol*. 2010;28:272-278.

Indocyanine Green Fluorescence-Guided Enucleation via the Serosal Approach for Benign Subepithelial Tumors of the Gastroesophageal Junction

Ji-Hyeon Park, Sojung Kim, Ho Seok Seo, Kyo Young Song, Han Hong Lee

Division of Gastrointestinal Surgery, Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

Subepithelial tumors (SETs) located at the gastroesophageal (GE) junction remain technically challenging in minimally invasive surgery because the convergence of the esophageal sphincter, diaphragmatic hiatus, and gastric fundus creates a confined operative field. When a tumor is fully embedded within the muscular layer, its capsular margin is often indistinguishable from the serosal surface, making precise enucleation technically demanding. To address this limitation, we adopted a fluorescence-guided technique that enables accurate intraoperative localization of the tumor through indocyanine green (ICG) injection. After induction of anesthesia, approximately 0.1–0.2 mL (0.05–0.1 mg) of ICG diluted in normal saline is injected endoscopically into the submucosal plane at the tumor site for benign SETs. During surgery, near-infrared visualization provides a distinct fluorescent margin that guides safe serosal incision and enucleation while preserving the mucosa and the anatomy of the GE junction. This technique is particularly useful for benign, well-encapsulated lesions such as leiomyoma or ectopic pancreas, where clear dissection planes can be preserved. However, it should not be used for lesions with any suspicion of gastrointestinal stromal tumor or other malignant potential, because capsular or intratumoral injection may pose a theoretical risk of tumor cell dissemination. Careful peritumoral submucosal injection that avoids capsular disruption may be cautiously considered. In selected benign tumors, ICG-guided serosal enucleation provides clear localization, facilitates complete resection, and minimizes both functional and structural complications at the GE junction.

Keywords: Gastrointestinal stromal tumors; Esophagogastric junction; Indocyanine green; Optical imaging; Laparoscopy; Minimally invasive surgical procedures

Introduction

Subepithelial tumors (SETs) located at the gastroesophageal (GE) junction represent one of the most technically challenging entities in minimally invasive gastric surgery. Standard procedures such as wedge resection carry a high risk of GE stricture, while enucleation in-

creases the risk of leakage and mucosal injury, particularly for tumors originating from the muscularis propria with limited serosal exposure [1].

Fluorescence-guided surgery using indocyanine green (ICG) has recently emerged as a valuable adjunct for intraoperative visualization. Although ICG is widely used for perfusion assessment and lymphatic mapping,

Received: December 1, 2025 **Revised:** December 8, 2025 **Accepted:** December 8, 2025

Corresponding author: Han Hong Lee, MD, PhD

Division of Gastrointestinal Surgery, Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea

Tel: +82-2-2258-2876, Fax: +82-2-595-2822, E-mail: painkiller9@catholic.ac.kr

© 2025 Korean Surgical Skill Study Group

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (<https://creativecommons.org/licenses/by-nc/4.0/>) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

its selective injection near benign, encapsulated lesions such as insulinomas has also been shown to enhance tumor localization [2].

Gastric SETs encompass various entities, including gastrointestinal stromal tumors (GISTs), leiomyomas, schwannomas, and ectopic pancreas. While not suitable for all cases due to oncological concerns, ICG-guided enucleation may represent a useful option for benign, well-encapsulated tumors [3].

Herein, we describe our experience with ICG-guided serosal enucleation for benign SETs at the GE junction, which enables precise tumor localization and safe resection while preserving mucosal integrity and sphincter function.

Case Presentation

A 37-year-old female presented with intermittent abdominal discomfort. Esophagogastroduodenoscopy (EGD) performed 2 years earlier had revealed a small SET at the GE junction, which showed interval growth on follow-up EGD and abdomen computed tomography (3.6×1.8 cm). The lesion demonstrated homogeneous enhancement without ulceration, consistent with a leiomyoma. The patient underwent laparoscopic ICG-guided serosal approach enucleation (Video). After induction of anesthesia and before surgical draping, an intraoperative endoscopy was performed to confirm the lesion location and assess its endoluminal characteristics. In cases where the lesion is strongly suggestive of benign pathology—such as leiomyoma or ectopic pancreas, as in the present case—a small amount of ICG (approximately 0.1–0.2 mL, corresponding to 0.05–0.1 mg diluted in normal saline) is injected directly into the tumor. Although, in theory, the ideal approach would be to position the needle within the potential space between the capsule and the tumor, this is technically unrealistic because the true capsule is extremely thin and cannot be reliably visualized endoscopically. Therefore, in practical application, gently puncturing the tumor surface and injecting ICG intratumorally allows the dye to spread into the potential space between the capsule and the tumor. On laparoscopic near-infrared imaging, the capsule then becomes clearly delineated from the surrounding tissue, enabling successful enucleation

of the tumor. In this case, a small mucosal defect was identified after enucleation and repaired with interrupted primary sutures, followed by continuous barbed suture closure of the seromuscular layer. Intraoperative endoscopy was used to check the GE junction for narrowing or bleeding, while an air leak test was performed laparoscopically. No air leakage was detected. The final pathology confirmed leiomyoma. The patient resumed oral intake on postoperative day 1 and was discharged on day 3 without complications. This study was approved by the Institutional Review Board (IRB) of Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea (approval number: KC25ZISI0817). The requirement for written informed consent was waived by the IRB because this single-patient case report used only anonymized data.

Discussion

Management of GE-junction SETs demands a balance of oncologic safety, functional preservation, and technical feasibility within a very restricted operative field. To address these challenges, various approaches—including laparoscopic transgastric enucleation [4], laparoscopic transgastric resection [5], and laparoscopic-endoscopic cooperative surgery [6]—have been described, although no standardized method has been established [7].

Serosal enucleation has emerged as a compelling alternative in appropriately selected patients. By preserving the gastric contour and maintaining mucosal and junctional integrity, this technique offers the promise of functionally superior outcomes [8]. However, a significant limitation remains: many SETs—particularly those originating from the muscularis propria—are deeply embedded and lack the external bulging necessary for visual identification. In such cases, blind dissection may increase the risk of mucosal perforation, incomplete resection, or altered junctional mechanics. Recent studies underscore this challenge in GE junction SETs, noting the heightened technical demands in achieving safe and effective enucleation at this location.

Fluorescence-guided surgery using ICG offers real-time demarcation of the capsular plane without disrupting the lesion. Selection submucosal injection at peritumoral or tumor site has been shown to improve

intraoperative localization in benign, well-encapsulated tumors such as insulinoma, without oncologic signal for harm; by diffusing along loose connective tissue, ICG highlights dissection planes and may reduce unnecessary muscular injury [2,9,10].

However, this technique must be applied with caution: in lesions where malignancy cannot be excluded, injection into the capsule or tumor parenchyma remains contraindicated due to the theoretical risk of tumor cell dissemination. Therefore, this technique was applied to SETs that were histologically confirmed as benign through preoperative EGD- or endoscopic ultrasound (EUS)-guided biopsy, or strongly suspected to be benign based on EUS and/or computed tomography findings, such as leiomyoma or ectopic pancreas [3]. In cases of GISTs or lesions with malignant potential, a peritumoral submucosal injection—similar to the technique used for ICG lymphography during gastric cancer surgery—could be considered. Even a small-volume injection at the submucosal plane provides sufficient fluorescence to localize the tumor intraoperatively without compromising oncologic safety. Although not applicable to the present case, we have previously encountered situations where very small or flat lesions were not readily identifiable from the serosal surface; in those instances, peritumoral submucosal injection allowed accurate localization and facilitated safe enucleation.

Nevertheless, from a technical perspective, ICG-guided serosal enucleation delivers several advantages. It enhances visualization of deeply embedded lesions without serosal bulging, facilitates capsular-plane dissection for complete enucleation with minimal tissue injury, and helps preserve mucosal and junctional integrity, reducing leakage or stricture. In narrow GE junction, the technique enables safe closure with tension-free barbed suture techniques that further supports functional preservation.

In conclusion, ICG-guided serosal enucleation offers a practical, safe, and function-preserving surgical option for benign GE-junction SETs. Combining endoscopic ICG injection with near-infrared imaging enables accurate localization and complete resection while preserving junctional anatomy. Going forward, prospective studies will be essential to refine technique parameters and evaluate short and long-term outcomes.

Disclosure

No potential conflict of interest relevant to this article was reported.

Author contributions

Conceptualization: JHP, HSS, HHL; Data curation: JHP, SK; Resources: SK, HSS, KYS, HHL; Formal analysis: JHP; Investigation: JHP; Methodology: JHP, HSS, HHL; Supervision: KYS, HHL; Visualization: JHP; Writing-original draft: JHP; Writing-review & editing: JHP, SK, HSS, KYS, HHL.

ORCID

Ji-Hyeon Park, <https://orcid.org/0000-0002-6811-8895>
Sojung Kim, <https://orcid.org/0000-0002-5030-2918>
Ho Seok Seo, <https://orcid.org/0000-0002-3606-6074>
Kyo Young Song, <https://orcid.org/0000-0002-5840-1638>
Han Hong Lee, <https://orcid.org/0000-0002-7541-8490>

References

1. Seo H. Surgical approaches for subepithelial tumors in difficult locations of the gastrointestinal tract. *Foregut Surg*. 2024;4:51-56.
2. Tao H, Zeng X, Lin W, Wang Z, Lin J, Li J, et al. Indocyanine green fluorescence imaging to localize insulinoma and provide three-dimensional demarcation for laparoscopic enucleation: a retrospective single-arm cohort study. *Int J Surg*. 2023;109:821-828.
3. Pal S, Hodgar D. Gastrointestinal subepithelial lesions: a review. *J Digest Endosc*. 2023;14:99-105.
4. Lee J, Lee WY. Laparoscopic transgastric enucleation of a giant leiomyoma near the esophagogastric junction: a case report. *Int J Surg Case Rep*. 2023;105:107989.
5. Priego P, Cuadrado M, García-Moreno F, Carda P, Galindo J. Laparoscopic transgastric resection of gastric submucosal tumor located near the esophagogastric junction. *Mini Invasive Surg*. 2018;2:6.
6. Min JS, Seo KW, Jeong SH. Choice of LECS procedure for benign and malignant gastric tumors. *J Gastric Cancer*. 2021; 21:111-121.

7. Kim SG, Eom BW, Yoon H, Kook MC, Kim YW, Ryu KW. Necessity of individualized approach for gastric subepithelial tumor considering pathologic discrepancy and surgical difficulty depending on the gastric location. *J Clin Med.* 2022;11:4733.
8. Milito P, Asti E, Aiolfi A, Zanghi S, Siboni S, Bonavina L. Clinical outcomes of minimally invasive enucleation of leiomyoma of the esophagus and esophagogastric junction. *J Gastrointest Surg.* 2020;24:499-504.
9. Doi R, Toyoda E, Kitaguchi K, Abe Y, Hirose T. Near-infrared intraoperative imaging of pancreatic neuroendocrine tumors: a new era in laparoscopic pancreatic surgery. *Laparosc Surg.* 2018;2:29.
10. Huang Z, Zeng S, Wen S, Fang C, Zeng N. Fluorescence-guided visualization of pancreatic neuroendocrine tumor borders. *Innov Med.* 2023;1:100025.

Laparoscopic Inguinal Hernia Repair in Female Pediatric Patients

Joong Kee Youn^{1,2}

¹Department of Pediatric Surgery, Seoul National University Hospital, Seoul, Republic of Korea

²Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea

Laparoscopic inguinal hernia repair (LIHR) has become a widely adopted surgical approach for pediatric inguinal hernia because it offers superior visualization and enables simultaneous assessment of the contralateral side. An 8-month-old female infant presented with a spontaneously reducing bulge in the right inguinal region, most noticeable during diaper changes. Physical examination revealed an easily reducible inguinal mass that was palpably firm and spherical, raising strong suspicion for ovarian inclusion. A positive silk glove sign was also identified on the contralateral side. Under general anesthesia, a three-port laparoscopic technique was used, consisting of a 5-mm umbilical port and two 3-mm working ports. The peritoneum and gubernaculum were carefully dissected from surrounding structures using electrocautery before sac closure, a step performed to minimize the risk of recurrence. Both the symptomatic right hernia sac and the asymptomatic contralateral patent processus vaginalis, which was visually confirmed intraoperatively, were closed using an intracorporeal purse-string high ligation with absorbable sutures. Three-port LIHR with meticulous dissection of the peritoneum and gubernaculum represents an effective and definitive technique for pediatric inguinal hernia repair. This approach allows simultaneous bilateral repair and is associated with excellent postoperative recovery, supporting its continued use as a primary surgical method.

Keywords: Inguinal hernia; Laparoscopy; Inguinal canal

Introduction

The cumulative incidence of inguinal hernia from birth to 15 years of age has been reported as 6.62% in boys and 0.74% in girls in a nationwide cohort study with incarceration rate around 1%-2% [1]. While traditional open herniorrhaphy remains an established approach, laparoscopic techniques have increasingly gained acceptance since the pioneering work by Esposito and Montupet [2] in the mid-1990s.

Laparoscopic inguinal hernia repair (LIHR) is now

widely applied and has become a major surgical approach due to several reported advantages over open surgery, including superior visualization of the inguinal anatomy, minimal invasiveness and excellent cosmesis, and the ability to assess and simultaneously repair a contralateral patent processus vaginalis (PPV) [3].

This report details the three-port technique, which currently remains one of the most commonly practiced methods for this procedure.

Received: November 11, 2025 **Revised:** December 10, 2025 **Accepted:** December 10, 2025

Corresponding author: Joong Kee Youn, MD, PhD

Department of Pediatric Surgery, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea

Tel: +82-2-2072-4252, Fax: +82-2-747-5130, E-mail: bead47@snu.ac.kr

© 2025 Korean Surgical Skill Study Group

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (<https://creativecommons.org/licenses/by-nc/4.0/>) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Case Presentation

Patient

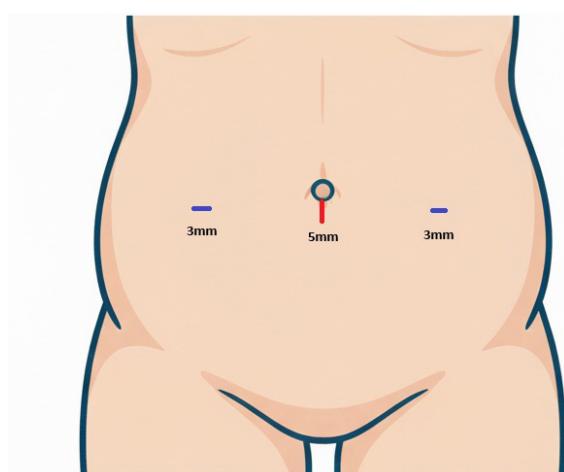
An 8-month-old female infant presented to our outpatient clinic. One week prior to the visit, the patient's parents had noticed a bulging, protruding mass in the right inguinal region. They reported that the mass protruded when the infant cried but subsequently reduced spontaneously. The patient was initially taken to a local pediatric clinic where an inguinal hernia was suspected, leading to a referral to our pediatric surgery department.

On physical examination, a bulging, protruding mass was clearly visible in the right inguinal region. When the patient was laid supine on the examination bed, the mass was easily reducible. Palpation of the contralateral side revealed no evidence of herniation; however, a positive silk glove sign was noted. The patient was scheduled for an elective LIHR and was subsequently discharged home.

Surgical procedure

The procedure was initiated under general anesthesia. An open technique was used to insert a 5-mm infra-umbilical port for the introduction of a 5-mm flexible scope. Subsequently, two working ports were placed: two 3-mm trocars were inserted at the right and left midclavicular lines lateral to the umbilicus (Fig. 1). In infants and small babies, the working ports were positioned more caudally than the umbilical level to facilitate optimal instrument maneuverability.

Upon insertion of the laparoscopic camera, the asymptomatic contralateral internal inguinal ring (IIR) was routinely inspected, which revealed a PPV. If ovary was herniated, immediate reduction should be performed before mobilization of the sac. Prior to defect closure, the peritoneum surrounding the IIR was circumferentially incised and meticulously dissected from underlying structures using electrocautery to ensure complete mobilization of the hernia sac neck, including the gubernaculum, without bleeding to minimize the risk of recurrence. This was initiated by gently elevating the peritoneum and making a small entry point. The opening was then gradually enlarged carefully mobilizing under direct visualization. In open pediatric inguinal hernia repair, it has long been standard practice to ligate and divide the hernia sac together with the round ligament at the level of the internal ring. When this principle is applied to laparoscopic hernia repair, the same step can be safely reproduced intraperitoneally by performing a meticulous transection of the gubernaculum. The definitive repair consisted of a laparoscopic high ligation achieved by placing a purse-string suture at the deepest margin of the peritoneal defect. Absorbable 5/0 sutures (Vicryl®) were used, and the knot was secured via intracorporeal ligation. The contralateral PPV was also ligated in the same manner (Video). To prevent a future metachronous contralateral hernia, it is considered reasonable to close a detected contralateral PPV during the same anesthesia.


Following successful closure of the internal rings, the pneumoperitoneum was released by deflating the abdomen, and all abdominal incisions were closed in layers.

Postoperative management

In line with the standard protocol, the patient was discharged on the same day of the operation. Follow-up examinations were scheduled in the outpatient clinic at 2 weeks and 3 months postoperatively.

Ethical approval

This study was reviewed and approved by the Institutional Review Board (IRB) of Seoul National University Hospital (IRB No. 2212-082-1386). The requirement for informed consent was waived because of the retrospec-

Fig. 1. The size and position of laparoscopic ports applied in pediatric laparoscopic inguinal hernia repair.

tive nature of the study, the use of anonymized data, and the absence of any additional risk to the participants.

Discussion

Many surgical techniques for LIHR in pediatric patients have been described in the literature. These techniques can generally be summarized as intracorporeal, extracorporeal, and percutaneous approaches [4].

For instance, a single-port percutaneous method has been reported in various countries, including Japan and European nations. This technique involves placing only one port below the umbilicus solely for the camera. A small skin incision is then made in the inguinal area, allowing a suture needle to be passed from outside the abdomen to perform a simple suture closure of the IIR. This method is widely employed due to its significant advantages, such as excellent cosmetic outcomes and shorter operative time [5].

Currently, LIHR is being applied far more frequently than the traditional open method and is widely considered the main surgical approach for pediatric inguinal hernia. In the early stages of its adoption, several issues were raised against LIHR compared to open surgery, including longer operative time and a higher recurrence rate [6]. These concerns, however, have been gradually resolved. While initial reports showed a significant difference in operative time (e.g., 25 min versus 47 min), the literature indicated a gradual decrease with advancements in laparoscopic training [7]. Furthermore, in LIHR, the ovary and uterus were frequently observed to be shifted toward the hernia orifice, which highlights a potential benefit of the laparoscopic approach in reducing the risk of injury to the ovary, fallopian tube, and potentially the uterus [8].

Several modifications of the technique have been described and published, including the Z suture, and the use of interrupted or continuous sutures. However, these techniques were not without a high recurrence rate due to the “skip area” left over the vas deferens and testicular vessels [6]. Consequently, many techniques were introduced in which the peritoneum was transected or disconnected at the internal ring, aiming to create some trauma and scarring to improve healing [9]. The recurrence rate was successfully decreased to 0%–4% in

many series using these techniques [10].

Disclosure

No potential conflict of interest relevant to this article was reported.

ORCID

Joong Kee Youn, <https://orcid.org/0000-0002-6345-5745>

References

1. Chang SJ, Chen JY, Hsu CK, Chuang FC, Yang SS. The incidence of inguinal hernia and associated risk factors of incarceration in pediatric inguinal hernia: a nation-wide longitudinal population-based study. *Hernia*. 2016;20:559-563.
2. Esposito C, Montupet P. Laparoscopic treatment of recurrent inguinal hernia in children. *Pediatr Surg Int*. 1998;14:182-184.
3. Gorsler CM, Schier F. Laparoscopic herniorrhaphy in children. *Surg Endosc*. 2003;17:571-573.
4. Ostlie DJ, Ponsky TA. Technical options of the laparoscopic pediatric inguinal hernia repair. *J Laparoendosc Adv Surg Tech A*. 2014;24:194-198.
5. Oue T, Kubota A, Okuyama H, Kawahara H. Laparoscopic percutaneous extraperitoneal closure (LPEC) method for the exploration and treatment of inguinal hernia in girls. *Pediatr Surg Int*. 2005;21:964-968.
6. Shalaby R, Ismail M, Dorgham A, Hefny K, Alsaied G, Gabr K, et al. Laparoscopic hernia repair in infancy and childhood: evaluation of 2 different techniques. *J Pediatr Surg*. 2010;45:2210-2216.
7. Esposito C, Escolino M, Cortese G, Aprea G, Turrà F, Farina A, et al. Twenty-year experience with laparoscopic inguinal hernia repair in infants and children: considerations and results on 1833 hernia repairs. *Surg Endosc*. 2017;31:1461-1468.
8. Muta Y, Odaka A, Inoue S, Takeuchi Y, Beck Y. Female pediatric inguinal hernia: uterine deviation toward the hernia side. *Pediatr Surg Int*. 2021;37:1569-1574.
9. Oshiba A, Ashour K, Aboheba M, Shehata S, Shalaby R. Comparative study between purse-string suture and peritoneal disconnection with ligation techniques in the laparoscopic repair of inguinal hernia in infants and children. *Ann*

Pediatr Surg. 2016;12:137-141.

10. Boo YJ, Han HJ, Ji WB, Lee JS. Laparoscopic hernia sac transection and intracorporeal ligation show very low recurrence

rate in pediatric inguinal hernia. *J Laparoendosc Adv Surg Tech A*. 2012;22:720-723.

Carotid Endarterectomy with Plication

Seongeun Kim, Jun Gyo Gwon

Department of Vascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea

Carotid endarterectomy (CEA) remains the standard surgical treatment for patients with significant carotid artery stenosis, with the primary goal of preventing ischemic stroke by removing atherosclerotic plaque and restoring normal blood flow. Achieving optimal outcomes requires careful dissection, precise endarterectomy, and meticulous arterial closure, all of which are essential for minimizing perioperative complications. Carotid plication is a surgical technique performed during CEA to correct arterial redundancy and kinking that may persist after plaque removal. By folding and suturing the redundant arterial segment without resection, the technique preserves luminal integrity and physiologic arterial length while reducing flow turbulence and the associated risk of thrombosis. This approach provides anatomical straightening and reliable restoration of blood flow, offering a simple and durable alternative to resection with end-to-end anastomosis, particularly in patients with tortuous or elongated internal carotid arteries. In this video article, we demonstrate the fundamental steps and key principles of CEA and present a representative case in which carotid plication was performed to correct redundancy of the internal carotid artery.

Chapter Summary

00:00:10 Case introduction
00:00:35 Ultrasound findings
00:00:57 Magnetic resonance imaging findings
00:01:09 Neck illustration
00:01:24 Skin incision
00:01:41 Carotid exposure
00:02:01 Facial vein ligation
00:02:15 Perivascular dissection
00:02:55 Arteriotomy
00:03:33 Plication
00:04:20 Shunt insertion
00:04:59 Patch angioplasty
00:05:41 Shunt removal

00:06:24 Wound closure

00:07:37 Postoperative computed tomography

00:08:10 Plication technique

Disclosure

No potential conflict of interest relevant to this article was reported.

ORCID

Seongeun Kim, <https://orcid.org/0009-0003-0744-2055>

Jun Gyo Gwon, <https://orcid.org/0000-0002-1681-1014>

Received: October 29, 2025 **Revised:** December 5, 2025 **Accepted:** December 8, 2025

Corresponding author: Jun Gyo Gwon, MD, PhD

Department of Vascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea

Tel: +82-2-3010-3423, Fax: +82-2-3010-6701, E-mail: sojinb612@amc.seoul.kr

© 2025 Korean Surgical Skill Study Group

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (<https://creativecommons.org/licenses/by-nc/4.0/>) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

1. Poorthuis MH, Brand EC, Toorop RJ, Moll FL, de Borst GJ. Posterior transverse plication of the internal carotid artery to correct for kinking. *J Vasc Surg*. 2014;59:968-977.
2. Fokkema M, Reichmann BL, den Hartog AG, Klijn CJ, Schermerhorn ML, Moll FL, et al. Selective external endarterectomy in patients with ipsilateral symptomatic internal carotid artery occlusion. *J Vasc Surg*. 2013;58:145-151.e1.
3. Vukas H, Kadić-Vukas S, Piljić D, Vranić H, Jorgunčić A, Đozić E, et al. Patch angioplasty carotid endarterectomy versus eversion carotid endarterectomy. *Saudi Med J*. 2024;45:685-693.

Robot-Assisted Surgery Training for Medical Students in Low-Resource Areas: A Study Protocol

Ifrah Khurram¹, Jaclyn Jakubowski¹, Jacob Minter¹, Pedro F. Escobar²

¹San Juan Bautista School of Medicine, Caguas, Puerto Rico

²Department of Surgery, San Juan Bautista School of Medicine, Caguas, Puerto Rico

Robotic-assisted surgery (RAS), commonly associated with the da Vinci Surgical System (Intuitive Surgical, Inc.), has revolutionized minimally invasive surgery. As RAS systems are being increasingly adopted in teaching hospitals and used more frequently in procedures, there is a growing need for surgeons to be trained in this technology as early as the medical school years. In this article, we propose a potential low-resource, easily adoptable RAS pilot program that will be implemented at a medical school in Puerto Rico. A brief description of the program highlights faculty-led education, journal discussions, and simulation practice through hands-on modalities to establish early RAS proficiency in a feasible 2-week timeframe. By offering students early familiarity with robotic skills, this program may support specialty exploration and improve clinical preparedness. The goal of this pilot program proposal is not only to establish this protocol at a medical school in Puerto Rico but also to encourage other programs throughout the United States to consider adopting a similar training program in the hopes of making RAS training more ubiquitous in early medical training.

Keywords: Robotic surgical procedures; Minimally invasive surgical procedures; Pilot projects and schools, Medical

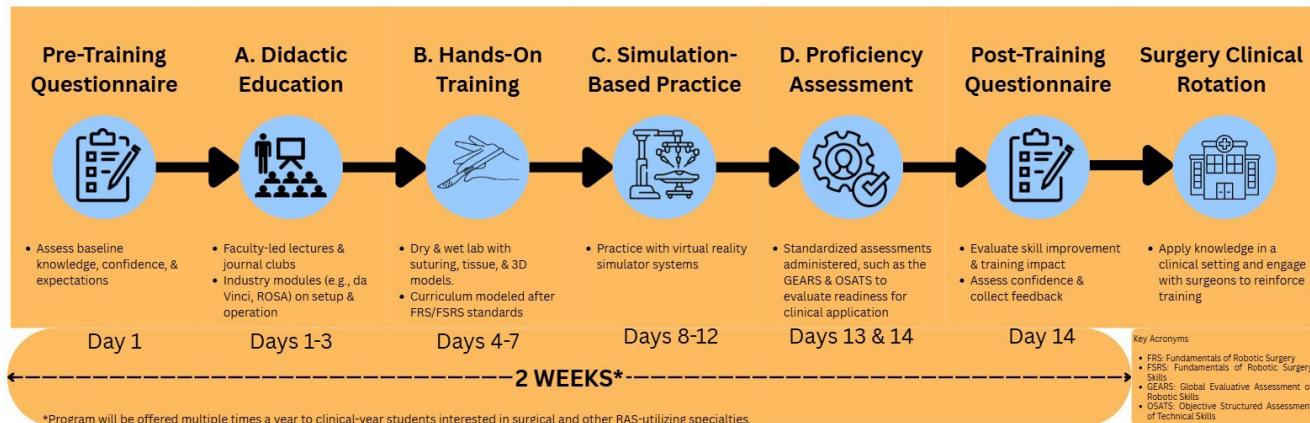
Introduction

Robotic-assisted surgery (RAS) has pioneered the field of minimally invasive surgery since the United States Food and Drug Administration approval of the da Vinci Surgical System (Intuitive Surgical, Inc.). Through three-dimensional (3D) image visualization and articulated instrumental control, this platform overcame many of the limitations of laparoscopic surgery [1]. As RAS implementation increases, there is a necessity to instruct future physicians to foster familiarity and foundational skills. As outlined in Fig. 1, we propose a potential 2-week pilot program to introduce medical students

to RAS through didactics, lab practice, and simulator training.

San Juan Bautista School of Medicine Robotic Medical Student Training Program

The proposed protocol is intended to take place before the 6-week surgery clinical rotation at San Juan Bautista School of Medicine, though 4th-year medical students who have completed the rotation may also participate. Student performance will be evaluated through a proficiency assessment as well as pre-/post-training questionnaires, as seen in Fig. 2.


Received: June 9, 2025 **Revised:** August 16, 2025 **Accepted:** August 18, 2025

Corresponding author: Ifrah Khurram, BS

San Juan Bautista School of Medicine, Luis A. Ferre Highway Exit #21, Road 172 Caguas to Cidra, Turabo Gardens Caguas 00725, Puerto Rico
Tel: +1-787-743-3038, E-mail: ifrahk@sanjuambautista.edu

© 2025 Korean Surgical Skill Study Group

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (<https://creativecommons.org/licenses/by-nc/4.0/>) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Fig. 1. Program overview and timeline.

3D, three-dimensional; RAS, robotic-assisted surgery.

Medical Student Assessment Questions

Pre-Training Questionnaire

Open-Ended Questions

- What are the three skills a medical student should acquire before assisting in a robotic procedure?
- In what ways could robotic surgery training improve your overall surgical abilities and clinical judgment?

Scaled Questions

- How would you rate your current understanding of robotic surgery and its applications? (Scale 1–5)
- How confident are you in explaining the benefits and limitations of robotic surgery? (Scale 1–5)

Post-Training Questionnaire

Open-Ended Questions

- What specific skills did you improve the most during the hands-on session (e.g., depth perception, fine motor control, etc.)?
- What challenges did you face using the robot simulator, and how did you address them?
- Which part of the training did you find most valuable: the didactics, hands-on training, simulator practice, or mentorship? Why?
- What improvements would you suggest for future robotic surgery training sessions?

Scaled Questions

- How would you rate your understanding of robotic surgery now compared to before training? (Scale 1–5)
- How confident do you now feel in explaining the benefits and limitations of robotic surgery? (Scale 1–5)

Fig. 2. Medical student assessment questions.

Didactic education (days 1–3)

The didactic education phase focuses on introducing the background and fundamentals of robotics surgery through passive and active learning modalities brought to the students via faculty and industry manufacturers.

Faculty-sponsored

Faculty proficient in robotic surgery will provide lectures covering the history, current status, and prospects of robotic surgery. There will also be discussion of key published literature, educational videos, and evidence-based data on RAS across a broad spectrum of surgical disciplines in a ‘journal club’ format.

Industry-sponsored

Medical students start with online modules provided by robotic surgery system manufacturers, such as the da Vinci Surgical System. These modules cover the technical aspects of the robotic system, including setup, troubleshooting, and basic operational skills [1,2].

Hands-on training (days 4–7)

Following didactic education, students engage in hands-on training. This includes practice with suturing pads, animal tissue, and 3D printed organs. Programs such as the Fundamentals of Robotic Surgery (FRS) and the Fundamentals of Robotic Surgery Skills (FSRS) and the ‘fundamentals of robotic surgery skills’ further support this training with the incorporation of dry and wet lab components [1,3].

Simulation-based practice (days 8–12)

Virtual reality (VR) simulators play a crucial role in robotic surgery training, allowing students to practice and refine their skills in a controlled environment [1,3,4].

Proficiency assessment (days 13 & 14)

Proficiency is assessed using standardized tools, such as the Global Evaluative Assessment of Robotic Skills (GEARS) and the Objective Structured Assessment of Technical Skills (OSATS). These assessments will not be used as pass/fail evaluations but as tools to guide feedback and track progress. Cheng and Chao [5] emphasize the use of assessments such as GEARS as ‘standardized and validated’ for trainees to ‘reflect real surgical situa-

tions.’ Ultimately, we aim to measure students’ skill acquisition using a formal framework, providing additional proctored practice for students needing more support [2].

Discussion

Since the da Vinci platform’s introduction in the late 1990s, RAS has expanded beyond traditional surgical fields into procedural specialties such as pulmonology and gastroenterology. Trials by Paez et al. [6] and Iacovazzo et al. [7] demonstrated that RAS, when used in bronchoscopy and gastrointestinal procedures, led to minimal side effects and quicker recovery compared to their respective gold standards without compromising procedure outcomes.

Unlike rigid prior programs, ours emphasizes flexibility and accessibility. Similar training programs like Mullens et al. [8] showed medical students gained procedural confidence after just 2 weeks. Our 2-week program will be offered to clinical-year medical students; in the case of San Juan Bautista, throughout the 3rd and 4th years. As many students are still undecided as to their specialty of choice when clinical years begin, this early exposure can clarify career goals, fill knowledge gaps, and enhance clinical and professional skills. Multiple offerings throughout the academic year will allow students to engage when it best supports their development.

Limitations include resource constraints, as RAS and simulators require substantial financial support for software updates, instrumentation, and education. The current state of healthcare in Puerto Rico is characterized by persistent structural challenges, which are exacerbated by recurrent natural disasters and economic instability [9]. Cultural/logistics barriers, faculty buy-in, and curriculum integration, may also impact implementation.

A 2023 study by Kalinov et al. [10] raised concerns about the limited availability of VR simulators and certified instructors. While access has improved, even in resource-limited regions like Puerto Rico, Kalinov et al. [10] state that VR training alone may fall short in developing fine motor tasks, such as camera targeting and threading, due to the dexterity required by the RAS. This

reinforces the importance of hands-on skill development as a critical component of this program.

The cost is the most evident drawback of such a pilot program as hardware, software, maintenance, and consumables expenses can vary. However, many widely adopted platforms, such as da Vinci Xi and SP, arrive with integrated training packages that include online modules, VR simulators, dry labs, and certification programs. Specifically in its implementation in Puerto Rico, the equipment is government-funded in the county hospital of San Juan for clinical use and is also being used in academic hospital settings to train medical students, residents, and fellows. This infrastructure, combined with the medical school wet labs, facilitates a cost-effective implementation and sustainability at the medical school level.

As this manuscript presents a study protocol that has not yet been implemented, we have not included outcome measures or a sample-size calculation. Once approved by San Juan Bautista School of Medicine's Institutional Review Board and a pilot cohort of students is enrolled, we plan to measure percentage improvement in GEARS and learner confidence scores from pre-to post-assessment to support our determination of the sample-size for future implementations of the pilot program.

Conclusion

This proposed pilot protocol for a medical school in Puerto Rico provides a structured approach in robotic surgery, balancing knowledge with practical skills and clinical experience over a 2-week period. The curriculum is designed to be adaptable based on institutional resources and demonstrates that even with limited means, students can have early exposure to RAS, supporting early skill development and aligning with the dynamic demands of surgical education.

Disclosure

No potential conflict of interest relevant to this article was reported.

Author contributions

Conceptualization: PFE; Methodology: IK, JJ, JM, PFE; Project administration: IK; Visualization: IK; Writing-original draft: IK, JJ, JM, PFE; Writing-review & editing: IK, JJ, JM, PFE.

ORCID

Ifrah Khurram, <https://orcid.org/0000-0002-4714-7785>
Jaclyn Jakubowski, <https://orcid.org/0009-0002-0251-1229>
Jacob Minter, <https://orcid.org/0009-0007-0219-1364>
Pedro F. Escobar, <https://orcid.org/0000-0002-8703-0469>

References

1. Leal Ghezzi T, Campos Corleta O. 30 Years of robotic surgery. *World J Surg.* 2016;40:2550-2557.
2. Gross ND, Holsinger FC, Magnuson JS, Duvvuri U, Genden EM, Ghanem TA, et al. Robotics in otolaryngology and head and neck surgery: recommendations for training and credentialing: a report of the 2015 AHNS Education Committee, AAO-HNS Robotic Task Force and AAO-HNS Sleep Disorders Committee. *Head Neck.* 2016;38 Suppl 1:E151-E158.
3. American College of Obstetricians and Gynecologists' Committee on Gynecologic Practice, The Society of Gynecologic Surgeons. Robot-assisted surgery for noncancerous gynecologic conditions: ACOG Committee opinion, number 810. *Obstet Gynecol.* 2020;136:e22-e30.
4. Fisher RA, Dasgupta P, Mottrie A, Volpe A, Khan MS, Challacombe B, et al. An over-view of robot assisted surgery curricula and the status of their validation. *Int J Surg.* 2015;13:115-123.
5. Cheng SC, Chao YK. Editorial perspective: robot-assisted evaluation of robotic surgical skills. *Ann Surg Oncol.* 2022;29:6524-6525.
6. Paez R, Lentz RJ, Duke JD, Siemann JK, Salmon C, Dahlberg GJ, et al. Robotic versus electromagnetic bronchoscopy for peripheral pulmonary lesions: a randomized trial (RELIANT). *Am J Respir Crit Care Med.* 2025;211:1644-1651.
7. Iacovazzo C, Buonanno P, Massaro M, Ianniello M, de Siena AU, Vargas M, et al. Robot-assisted versus laparoscopic gastrointestinal surgery: a systematic review and metanalysis of intra- and post-operative complications. *J Pers Med.*

2023;13:1297.

8. Mullens CL, Van Horn AL, Marsh JW, Hogg ME, Thomay AA, Schmidt CR, et al. Development of a senior medical student robotic surgery training elective. *J Med Educ Curric Dev.* 2021;8:23821205211024074.
9. McSorley AM, Rivera-González AC, Mercado DL, Pagán JA,

Purtle J, Ortega AN. United States federal policies contributing to health and health care inequities in Puerto Rico. *Am J Public Health.* 2024;114:S478-S484.

10. Kalinov T, Georgiev T, Bliznakova K, Zlatarov A, Kolev N. Assessment of students' satisfaction with virtual robotic surgery training. *Helicon.* 2023;9:e12839.

Enacted June 30, 2024

GENERAL INFORMATION

Journal of Surgical Innovation and Education (J Surg Innov Educ, JSIE; pISSN 3022-9065/eISSN 3022-9073) is the official journal of the Korean Surgical Skill Study Group. Launched on June 30, 2024, with its inaugural issue as volume 1, number 1, JSIE is published biannually in English on the last day of June and December. JSIE is a peer-reviewed scientific journal dedicated to the advancement of surgical education and the dissemination of innovative surgical techniques. The journal's goal is to serve as an indispensable resource for surgeons, trainees, and healthcare professionals seeking to embrace innovation and refine their surgical practice in all surgical disciplines.

- Promote the development of innovative surgical procedures and technology.
- Ensure more effective transfer of surgery-related details and knowledge.
- Provide an immersive learning experience through high-definition surgical video demonstrations.
- Bridge the gap between traditional surgical education and the evolving demands of modern surgical practices.

JSIE publishes Original Articles, Review Articles, Short Communications, Letters to the Editor, and Editorials. This journal follows the Recommendations for the Conduct, Reporting, Editing, and Publication of Scholarly Work in Medical Journals (<https://www.icmje.org/>) in cases not described otherwise below.

MANUSCRIPT PREPARATION

1. Reporting Guidelines for Specific Study Designs

Research reports frequently omit important information. Therefore, reporting guidelines have been developed for several study designs that some journals may ask authors to follow. JSIE encourages authors to consult the reporting guidelines relevant to their specific re-

search design. A good source of reporting guidelines is the EQUATOR Network (<https://www.equator-network.org/home/>) and the United States National Institutes of Health/National Library of Medicine (https://www.nlm.nih.gov/services/research_report_guide.html).

2. Article Types

The journal welcomes high-quality papers, and the following article types are considered for publication:

A. Original Articles

- Clinical Trials
- Observational Studies (cohort, case-control)
- Innovative Technology/Procedure (including video)
 - Papers in this category describe new technologies/procedures and their evaluation. Any such manuscript must report data on the benefits, efficacy, and/or safety of the technology, regardless of whether it is experimental or clinical.
- How I Do It (include video)
- Dynamic Educational Manuscripts (video tutorial)
- Reviews (including systematic reviews and meta-analyses)

B. Case Reports

C. Short Communications

D. Letters to the Editor

E. Editorials

All manuscripts submitted to JSIE must be original, not published elsewhere, except in abstract form, and should not be under consideration for publication elsewhere.

JSIE will consider manuscripts prepared according to the instructions below. Other types are also negotiable with the Editorial Board.

3. Organization of the Manuscript

A. General Requirements and Manuscript Structure

Manuscripts should be composed in clear and concise English. Authors are encouraged to strive for clarity, brevity, and precision in both information

and language.

The main body and tables should be formatted as an MS Word file (.doc, .docx). Figures must be in .jpg, .gif, .tiff, or .pdf files. Use 12-point Calibri, Arial, or Times New Roman, double-spaced, with 3.0 cm margins on all four sides. Avoid using bold, italic, or underlining within the text, except for exceptional circumstances when this is necessary for clarity. Abbreviations should be generally avoided (except for units of measurement). When used, they should be defined the first time that they appear in the manuscript. Units of measurement must conform to the International System (SI) of Units, with the following abbreviations: year(s), yr; month(s), mo; day(s), day; hours, hr; minutes, min; second(s), sec; grams, g; liters, L; meters, m; sample size, n; degrees of freedom, df; standard error of the mean, SEM; standard deviation, SD; probability, p.

All original article manuscripts except for "How I Do It", "Dynamic Educational Manuscripts", and "Reviews" should be prepared as follows:

a. Title Page

- Article type
- Full title of the manuscript. The title should be as brief as possible. A running title should also be included, not exceeding 40 characters.
- List of authors: The first and last names of each author should be given, along with their highest academic degree. Authors should fulfill the International Committee of Medical Journal Editors (ICMJE) authorship criteria (<https://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html>). All authors are recommended to provide an ORCID (Open Researcher and Contributor ID; to obtain an ORCID, authors can register at the ORCID web site: <https://orcid.org>).
- Authors' affiliations: The department and institutional affiliation for each author should be given.
- The name, address, telephone, and email of the author to whom correspondence being addressed should be provided.
- Funding information specific to this paper. For each source of funding, both the research funder and the grant number (if available) should be given.

b. Abstract

- The abstract should be structured (Background, Methods, Results, and Conclusions) and should not exceed 300 words.
- Up to six keywords from the MeSH (Medical Subject Heading) of Index Medicus should be given, separated by a semicolon.
- Abstracts for "How I Do It" and "Dynamic Educational Manuscripts" do not need to follow this structure; a free-form format is acceptable.

c. Main Text

The main text should be organized in the following order: Introduction, Materials and Methods, Results, Discussion, Disclosure, Acknowledgments, References, and Figure legends. The position of figures and tables should be indicated in the text. Tables and Figures should be prepared separately. The text should not exceed 3,500 words (excluding abstract, references, tables, figures, and legends to figures and illustrations), and there should be no more than seven tables and figures in total, if possible.

- Introduction: Briefly describe the purpose(s) of the investigation, including relevant background information.
- Materials and Methods: Describe the research plan, materials or subjects, and methods used. Explain in detail how the disease was confirmed and how subjectivity in observations was controlled. When experimental methodology is the main issue of the paper, describe the process in detail to enable a reader to recreate the experiment as precisely as possible. When quoting specific materials, equipment, or proprietary drugs, the name of the manufacturer must be given in parentheses. Generic names should be used instead of commercial names. Clearly describe the selection of observational or experimental participants (healthy individuals or patients, including controls), including eligibility and exclusion criteria and a description of the source population. Because the relevance of such variables as age,

sex, or ethnicity is not always known at the time of study design, researchers should aim for the inclusion of representative populations into all study types and at a minimum provide descriptive data for these and other relevant demographic variables.

Ensure correct use of the terms sex (when reporting biological factors) and gender (identity, psychosocial or cultural factors), and, unless inappropriate, report the sex and/or gender of study participants, the sex of animals or cells, and describe the methods used to determine sex and gender. If the study was done involving an exclusive population, for example in only one sex, authors should justify why, except in obvious cases (e.g., prostate cancer). Authors should define how they determined race or ethnicity and justify their relevance.

- **Results:** Results should be presented in logical sequence in the text, tables, and illustrations, and repetitive presentation of the same data in different forms should be avoided. Any data mentioned in the Methods must be presented in the Results section.
- **Discussion:** The results should be interpreted for readers. Emphasize new and important observations. Do not merely repeat the contents of the Results. Explain the meaning of the observations, along with relevant limitations. The answer to the purpose of the research should be connected to the results.
- **Disclosures:** Disclosures are required for each author, and every conflict of interest must be clearly disclosed.
- **Acknowledgments:** Individuals who contributed to the research but not significantly enough to be credited as authors can be acknowledged in this section.
- **Author Contribution:** Enter all author contributions in the submission system during submission.

To qualify for authorship, all contributors must meet at least one of the seven core contributions by CRediT (conceptualization, methodology, software, validation, formal analysis, investigation,

data curation), as well as at least one of the writing contributions (original draft preparation, review, and editing). Authors may also satisfy the other remaining contributions; however, these alone will not qualify them for authorship.

Contributions will be published with the final article, and they should accurately reflect contributions to the work. The submitting author is responsible for completing this information at submission, and it is expected that all authors will have reviewed, discussed, and agreed to their individual contributions prior to manuscript submission.

- **References:** In the text, references should be cited with Arabic numerals in brackets, numbered in the order cited. In the References section, the references should be numbered and listed in order of appearance in the text. All references should be presented in English, including the author, title, and the name of the journal. In the References section, journals should be abbreviated according to the style used in the list of journals indexed in the NLM Journal Catalog (<https://www.ncbi.nlm.nih.gov.nlmcatalog/journals>). Journal titles that are not listed in the Catalog should follow the ISO abbreviation as described in Access to the LTWA (List of Title Word Abbreviations; <https://www.issn.org/services/online-services/access-to-the-ltwa>). If there are six or fewer authors, all the authors should be recorded, and if there are seven or more authors, "et al." should be placed after the first six authors. Please see the following recommended citation style:

The References follow the NLM Style Guide for Authors, Editors, and Publishers (<https://www.ncbi.nlm.nih.gov/books/NBK7256/>) if not specified below.

In principle, the number of references is limited to 50 for original articles. Exceptions can be made only with the agreement of the Editor.

- Journal articles

1. Jung S, Lee HS. Robotic transabdominal preperitoneal repair for bilateral obturator hernia: a video vignette. *J Minim Invasive*

Surg. 2024;27:40-43.

2. Yang HJ, Lee H, Kim TJ, Jung DH, Choi KD, Ahn JY, et al. A modified eCura system to stratify the risk of lymph node metastasis in undifferentiated-type early gastric cancer after endoscopic resection. *J Gastric Cancer*. 2024 Jan 10 [Epub]. DOI: 10.5230/jgc.2024.24.e13

- Books and book chapters
- 3. White ME, Choyke PL. Duplex sonography. Springer; 1988.
- 4. White ME, Choyke PL. Duplex sonography of the abdomen. In: Grant EG, White EM, editors. Duplex sonography. Springer; 1988. p. 129-190.

- Online sources
- 5. World Health Organization (WHO). World health statistics 2021: a visual summary [Internet]. WHO; 2021 [cited 2021 Feb 1]. Available from: <https://www.who.int/data/stories/world-health-statistics-2021-a-visual-summary>

- Tables: Present tables in consecutive order of their appearance in the main body, followed by table captions. Avoid explaining content in the tables that is already visible in figures. Ensure that the contents are presented clearly and concisely in English, allowing readers to understand the table without needing to refer to the main body. Include footnotes below the tables and define all abbreviations that are not standard in this field in footnotes. Indicate footnotes in tables in superscripts as a), b), c). Statistical values, such as standard error of the mean (SEM), should be presented. Omit vertical and horizontal lines in the tables.

- Figures: Figures include graphs or images. Authors are required to provide each image in a separate file with either uncompressed TIFF, GIF, JPEG, or EPS format. When citing separate figures, supply captions such as "Figure 1A" and "Figure 1B." JSIE encourages authors to use col-

or to increase the clarity of figures. Provide brief and easy-to-read footnotes. The minimum resolution required is 300 dpi (dots per inch) or 3 million pixels, as per the Guidelines for Digital Art (<http://art.cadmus.com/da/guidelines.jsp>). To cite figures that have been previously published, a written consent is required, and a copy of the permission letter(s) must be attached. Figure legends should be typed double-spaced on a separate sheet at the end of the manuscript. Symbols, arrows, and letters should be used to indicate parts of illustrations. Each figure should be referred to in the text consecutively and should be numbered according in order of citation. All images must be correctly exposed, sharply focused, and prepared in files of 300 dpi or more.

- Videos: Video clips related to surgery and advanced surgical techniques can be submitted for placement on the Journal website. The video may be up to 15 minutes in duration with a maximum file size of 2 gigabytes. Video exceeding 2 gigabytes should be sent via email (support@m2-pi.com). The available video formats are Windows Media Player (.wmv), MPEG (.mpg, .mpeg), Audio Video Interleave (.avi), and QuickTime (.mov). Free video editing assistance will be provided for submitted videos. There should be no audio narration in the videos, except for Dynamic Educational Manuscripts. Only written scripts (subtitles) should be used.

B. How I Do It

Manuscripts for "How I Do It" should be organized in the following order: Title page, Abstract, Introduction, Case Presentation, Discussion, Disclosure, Acknowledgements, References, and Figure legends. The title page and abstract should meet the general requirements outlined in the section above. The position of figures and tables should be indicated in the text. Tables and Figures should be prepared separately. These should be presented as briefly as possible. Succinct articles are more likely to be accepted for publication. Manuscript should be no more than 1,000 words, with a maximum of 10 references and 5 tables/figures in total (i.e.,

the total number of tables and figures and tables should not exceed 5). The title page should be the first page. The Case Presentation section should not include any detailed information that can be used to identify the patient. Only a brief clinical information should be included that is relevant to the technique or procedure described in the paper. When using specific patient information and photos the Release Form for Photographs of Identifiable Patients or consent from the patient(s) and IRB approval might be required. All information that may reveal the patient identification or the hospital, including the date, must be omitted from images. Video clips that are presented in manuscripts should not exceed 15 minutes and must meet the requirements of video materials in the “Dynamic Educational Manuscripts” category, except for audio narration.

C. Dynamic Educational Manuscripts (video tutorials)

Dynamic manuscripts are submitted as video articles accompanied by regular text abstracts, which will play when the hyperlink is selected. A dynamic manuscript is recommended as a way for authors to demonstrate the details of surgical skill or technology with a video and explanation.

- Examples of this category could include: live demonstration or an intraoperative segment of the details of a surgical procedure/technology, a narrated educational lecture in any field of surgery, a surgical endoscopic procedure, a bed-side procedure, or a physical examination.

- References: Include no more than ten references below the chapter summary. Ensure all references follow the guideline stated in the Reference section above.

- Requirements:

- The video file resolution aspect ratio must be preferably 16:9 or alternatively 4:3.
- Video clips should not exceed 15 minutes in total.
- A high-quality audio narration in English must accompany the video. (Only for Dynamic Educational Manuscript)
- The maximum size for all files (including videos) in the submission is 2 gigabytes.

- Please submit a detailed chapter summary with time stamps and titles for key points in your video content.

Ex) 00:00:01 Introduction

00:00:10 Case summary

00:00:26 History of present illness

- Do not use any soundtrack.

- Annotation of anatomic structures or a brief explanation is encouraged.

D. Review Articles

Review articles provide concise reviews of subjects important to medical researchers and can be written by an invited medical expert. Both solicited and unsolicited review articles will undergo peer review prior to acceptance.

These have the same format as original articles, but the details may be more flexible depending on the content. The length of the manuscript should not exceed 5,000 words, 100 references, and no more than seven tables and figures in total, if possible. The abstract should not exceed 300 words and must be written as one unstructured paragraph.

E. Case Reports

Manuscripts for “Case Reports” should follow the same format and submission requirements as those for “How I Do It,” including organization, word limits, references, and figure/table restrictions. The required sections are: Title page, Abstract, Introduction, Case Presentation, Discussion, Disclosure, Acknowledgements, References, and Figure Legends. However, unlike “How I Do It,” video clips are not required and should not be submitted for Case Reports. All patient-identifiable information must be omitted or anonymized, and appropriate consent and IRB approval may be required for clinical images or details.

F. Short Communications

A Short Communication generally takes one of the following forms: A substantial re-analysis of a previously published article in JSIE or in another

journal; a brief report on the comments and discussion of a previously published article about the surgical techniques described in the "How I Do It" or "Dynamic Educational Manuscript" types; an article that may not cover "standard research" but that is of general interest to the broad readership of JSIE; a brief report of research findings adequate for the journal's scope and of particular interest to the community.

An abstract is required in an unstructured format. The word count of the main text should not exceed 1,000, and the total number of references is recommended to be equal to or less than 10. A submission in this category may be edited for clarity or length and may be subject to peer review at the editors' discretion.

G. Letters to the Editor

Any opinion or inquiry on a published paper can be addressed to the Editorial Board. An abstract is not required. A title page, main text, and references are required. The total number of references is recommended to be equal to or less than 5. The word count of the main text should be equal to or less than 1,500.

H. Editorials

An Editorial is usually invited by the Editorial Board. An abstract is not necessary. Title page, main text, and references are required. The total number of references is recommended to be equal to or less than 10. The word count of the main text should be equal to or less than 1,500.

MANUSCRIPT SUBMISSION AND PEER REVIEW

1. Online Submission

Submission is processed online, via the electronic manuscript management system, <https://submit.jsiejournal.org>. Authors are required to attach the manuscript file, copyright form, and checklists. Every document, including the manuscript and tables, must be prepared in MS

Word.

Questions regarding manuscript submission may be sent to the JSIE Editorial Office.

- Tel: 070-8691-1704, 1705

- E-mail: 2008surgeryedu@gmail.com

2. Peer Review Process

Each manuscript is reviewed by at least two independent reviewers. The reviewers of the journal are recruited from various specialties related to the topic. To ensure fair reviews, the process is double-blinded. Authors are required to complete revisions requested by the editors within 4 weeks. If the revised version is not submitted within 4 weeks, the submission will be considered as withdrawn by the author.

3. Cover Letter

The cover letter should inform the editor that neither the submitted material nor portions have been published previously or are under consideration for publication elsewhere. The authors should also explain why the submitted manuscript should be reviewed and considered for publication for JSIE.

4. Feedback after Publication

If authors or readers find any errors, or contents that should be revised, a request can be made to the Editorial Board. The Editorial Board may consider an erratum, corrigendum, or retraction. If a reader submits an opinion on a published article in the form of a letter to the editor, it will be forwarded to the authors. The authors are then able to respond to the reader's letter. Both the letters to the editor and the authors' replies may also be published.

5. Article Processing Charge

There are no author submission fees or other publication-related charges. All costs for the publication process are supported by the Publisher except for English editing service. JSIE is a platinum open-access journal that does not charge author fees.

- Authors have written the manuscript in compliance with Instructions for Authors and Recommendations for the Conduct, Reporting, Editing, and Publication of Scholarly Work in Medical Journals (<http://www.icmje.org>) from the International Committee of Medical Journal Editors, and the Guideline of Committee on Publication Ethics (<https://publicationethics.org>).
- Authors have omitted names and organizations in the manuscript submitted for review.
- The title page should include the title, author(s) full name(s), written as First Name then Last Name, and the name(s) of the affiliation(s), contact information of the corresponding author(s), ORCID, and notes.
- A running title should be no more than 40 characters including spaces.
- For original articles, the abstract should be within 300 words in the structure of Background, Methods, Results, and Conclusions. For reviews articles, short communications, how I do it, and dynamic educational manuscript include an unstructured abstract of no more than 300 words.
- The abstract should be included in the manuscript, regardless of whether it is included in the submission system.
- Up to six keywords should be included (those recommended in MeSH; <http://www.ncbi.nlm.nih.gov/mesh>).
- Information regarding the approval of an institutional review board and obtaining informed consent should be mentioned in article.
- The number of references is limited to 50 (for original articles), 100 (for reviews), or 10 (for short communication, How I Do It, and Editorials).
- Each figure should be uploaded as a separate file and should not be included in the main text. The file name of each figure should be the figure number.
- Figures must be prepared in no less than 300 dpi.
- The video may be up to 15 minutes in duration with a maximum file size of 2 gigabytes.
- Copyright transfer form has been signed by corresponding author with the consent of all authors.
- The authors are responsible for obtaining permission from the copyright holder to reprint any previously published material in JSIE.
- A checklist for the appropriate reporting guidelines, as available on the EQUATOR website (<http://www.equator-network.org/>), should be uploaded along with the manuscript.

Manuscript title: _____

I. Copyright Transfer Form

The authors hereby transfer all copyrights in and to the manuscript named above in all forms and media, now or hereafter known, to the Korean Surgical Skill Study Group effective if and when the paper is accepted for publication in the *Journal of Surgical Innovation and Education*. The authors reserve all proprietary right other than copyright, such as patent rights.

Everyone who is listed as an author in this article should have made a substantial, direct, intellectual contribution to the work and should take public responsibility for it.

This paper contains works that have not previously published or not under consideration for publication in other journals.

II. Conflict of Interest Disclosure Form

All authors are responsible for recognizing any conflict of interest that could bias their work in the acknowledgments, disclosing all financial support and any other personal connections.

Please check the appropriate box below:

No author of this paper has a conflict of interest, including specific financial interests, relationships, and/or affiliations relevant to the subject matter or materials included in this manuscript.

OR

The authors certify that all conflicts of interest, as applicable to each author, including specific financial interests, relationships, and/or affiliations relevant to the subject matter or materials are disclosed in the manuscript.
(Please describe in detail about these interests.)

These interests may include one or more of the following: employment; consultancy within the past two years; ownership interests - including stock options - in a start-up company, the stock of which is not publicly traded; ownership interest - including stock options but excluding indirect investments through mutual funds and the like - in a publicly traded company; research funding; honoraria directly received from an entity; paid expert testimony within the past two years; any other financial relationship (e.g., receiving royalties); membership on another entity's Board of Directors or its advisory committees (whether for profit or not for profit).

All authors certify that the work followed the research ethics and have approved the submission of the manuscript for publication.

Corresponding author

Signature

Date

* This copyright agreement has been signed by the submitting/corresponding author on behalf of any and all co-authors.